LINEAR INDUCTION MOTOR BRADLEY UNIVERSITY

Electrical and Computer Engineering

Tyler Berchtold, Mason Biernat and Tim Zastawny Project Advisor: Professor Steven Gutschlag 3/3/2016

Project Overview

- Bradley University's Department of Electrical and Computer Engineering's Senior Project
- Design, construct, and test a linear induction motor (LIM)
- Run off of a three-phase voltage input
- Rotate a simulated linear track and cannot exceed 1,200 RPM
- Monitor speed, output power, and input frequency

[1]

Linear Induction Motor Background

- Alternating Current (AC) electric motor
- Powered by a multiple phase voltage scheme
- Force and motion are produced by a linearly moving magnetic field
- Used to turn large diameter wheels

3

Alternating Current Induction Machines

- Most common AC machine in industry
- Produces magnetic fields in an infinite loop of rotary motion
- Stator wrapped around rotor

Rotary To Linear

BRADLEY

Previous Data

TABLE I: PREVIOUS DATA FROM MAGNETIC LEVITATION SENIOR PROJECT

Rotational Speed (RPM)	Output Power [W]
1106	510.78
1343	619.16

[5]

Linear Track Run-off

TABLE II: Total Run-off of Simulated Linear Track

Side	(+) Run-off	(-) Run-off	Total Run-off
Right	+ 0.015"	- 0.015"	0.03"
Middle	+ 0.016"	- 0.013"	0.029"
Left	+ 0.018	- 0.012"	0.03"

Initial Design

• 2-Pole machine

[7]

- Salient pole arrangement
- Laminated stator segments
- Operating at a max frequency of 120 [Hz]
- 16 AWG with current rating of 3.7 [A]
- Stator Tooth Length of 0.0762 [m]

Final Design

- 4-Pole machine
- Salient pole arrangement
- Laminated stator segments
- Operating at a max frequency of 120 [Hz]
- 16 AWG with current rating of 3.7 [A]
- Stator Tooth Length of 0.0889 [m] (3.5")

Final Stator Design

[9]

BRADLEY

Completed Stator

- Ordered and pressed by Laser Laminations
- Arrived 2/22/16
- Working on mounting solution using angle irons

Simulated Linear Track Mounting ¹² Solution

- Current focus is on raising the mount for the simulated linear track
- Using previous mounting materials to raise the wheel with a new metal base
- Progress made on drilling and cutting mounting solution
- Working on acquiring fine threaded screws to allow for adjustments in wheel height
- Smaller air-gap than anticipated can be achieved

[11]

Bobbins

- Plastic material to go in-between the stator teeth and coils
- Necessary to prevent shorting between copper coils and the stator core
- Increases the ease of coil wrapping
- The coils will be wrapped in a salient pole arrangement

Bobbin Solutions

- CosmoCorp
 - 15 Bobbins
 - 8 weeks turnaround
 - \$ 5,000
- Endicottcoil
 - Did not go into specifics
 - \$1,000 +
- Performance Bodies
 - 10 ft. of Plastic Rolls
 - 22" wide
 - 0.070" thick
 - \$19.99
- Awaiting Two Other Quotes

[12]

Variable Frequency Drive

- 10 Min wait between turning on after turning it off
- This is to allow for capacitors to de-energize.
- VFD
 - 0-10V signal correlates to 0-120 Hz
 - A/D Converter
 - D/A Converter
- A/D Converter
 - Onboard the ATmega128
 - 250 ms interrupt service routine
 - Compares input voltages

[13]

Coil Windings

- 16 AWG Wire
- GP/MR-200 Magnet Wire/ Winding Wire
- Heat is tolerated by coils
- Wire diameter calculated when determining turns per phase and stator tooth width
- 0.418" of tolerance between adjacent wires, not including bobbins

18 AWG Heavy Build GP/MR-200® Thermal Aging

Component Purchasing

• Laser Laminations: \$375

- \$225 for metal
- \$100 for pressing
- \$50 shipping
- Illinois Switchboard: \$176
 - 2,000 ft. of dipped copper wire

Current Project Total: \$551

Completed Work

- Stator design
- Stator construction and ordering
- Frequency vs. Speed simulation
- Turns per phase and total wire calculations
- Dipped copper wire ordering
- Mounting solution design for simulated linear track
- Mounting solution design for stator
- Overall system design
- A/D convertor
- Tachometer and LCD interfacing

Work-in-Progress

- D/A convertor
- VFD programming
- Stator mounting completion
- Complete mounting of wheel and stator
- Bobbins
- Coil windings

Project Gantt Chart

																																_	
TASK NAME	RESPONSIBLE	.E Date		Se	ep-15		Oct-15		5	Nov-15				De	c-15			Jan-1	16	Т	Feb	16	Mar-16			16		Apr-16			May-16		
IASK NAME	RESPONSIBLE	Date	1	8	15 22	29	6	13 2	0 27	3	10 1	7 24	1	8 1	15 2	2 29	5	12	19 26	6 2	29	16	23	1 8	15	22	29	5	12 19	9 26	3	10	
General System Design	All	September 4, 2015																															
Stator Design		November 17, 2015																		\top												٦	
Research Winding Types	Tim	September 22, 2015					L																				- 1					1	
Pole and Slot Pitch	Mason	September 22, 2015					L																				- 1					!	
Pole Depth	All	November 17, 2015																									- 1					- H	
Slot/Teeth Ratio	All	October 27, 2015																									- 1					- H	
Number of Coil Windings	All	November 17, 2015																															
Purchasing	All	November 30, 2015																															
Construction		February 2, 2016																															
Coil Windings	Mason and Tim	January 25, 2016					L														80%						- 1					!	
Stator Mount	Mason and Tim	February 8, 2016					L														75%						- 1					_ !	
Microcontroller Sytem	Tyler	February 8, 2016					L														80%						- 1					- H	
VFD Programming	Tyler	February 8, 2016					L														25%						- 1					- I!	
Sensor Programming	Tyler	January 25, 2016																			25%												
Implementation	All	February 9, 2016																		Í				25%									
Testing	All	March 7, 2016																		T					0	%						_	

[15]

Appendix

System Block Diagram

System Block Diagram

System Block Diagram

[17]

4-Pole to 2-Pole Comparison

4-Pole Machine Using 16 AWG:	2-Pole Machine Using 16 AWG:
• 45 Wraps fit on a 0.0762 m	• 45 Wraps fit on a 0.0762 m
Tooth	Tooth
 851 Turns per Phase 	• 1703 Turns per Phase
 213 Wraps per Stator Tooth 	• 852 Wraps per Stator Tooth
 5 Coil Wrapping Layers per 	• 19 Coil Wrapping Layers per
Stator Tooth	Stator Tooth
 Outer Diameter of 0.0362 m 	• Outer Diameter of 0.0601 m
 Coil Inductance of 0.3701 μH 	• Coil Inductance of 3.6249 μH

Turns Per Phase

$$P_{out} = 6.6pn_{ms}B_{ag}A_pT_{ph}k_wI_{ph}\eta(PF) \qquad (1.1)$$

 $\begin{array}{l} P_{out} = \ Output \ Power \\ p = \ Number \ of \ Poles \\ n_{ms} = \ Mechanical \ Cycles \ per \ Second \\ B_{ag} = \ Average \ Air - \ Gap \ Flux \ Density \ per \ Pole \ = \ 1.1 \ [T] \\ A_p = \ Cross - \ Sectional \ Area \ of \ Pole \ Faces \ = \ 0.0346 \ [m] \\ T_{ph} = \ Number \ of \ Turns \ per \ Phase \\ k_w = \ Coil \ Winding \ Factor \ = \ 0.86 \\ I_{ph} = \ Input \ Phase \ Current \ = \ 3 \ [A] \\ \eta = \ Efficiency \ = \ 0.6 \\ PF \ = \ Power \ Factor \ = \ 0.7 \end{array}$

Rotational to Linear Speed

$$\omega = \frac{120f}{p}$$
(1.3)

$$\omega = Rotational Speed of Rotor [rpm]
p = Number of Poles
f = Input Frequency [Hz]
$$v = r\omega \left(\frac{2\pi}{60}\right)$$
(1.4)

$$v = Linear Velocity \left[\frac{m}{s}\right]
r = Radius of Rotor [m]
$$U_{S} = 2\tau f$$
(1.5)

$$U_{s} = Linear Synchronous Speed \left[\frac{m}{s}\right]
\tau = Pole Pitch [m]$$
(1.5)$$$$

Initial Design

Rotational to Linear Speed

Pole Pitch

[20]

Pole Pitch = 0.1668m

Salient and Non-Salient

[10] Salient Pole Arrangement

[11] Non-Salient Pole Arrangement

BRADLEY UNIVERSITY

Tachometer Subsystem

- Main Components
 - Photo-interruptor
 - Transparent Disk with Notches
- External Interrupt
 - Counts pulses
 - 4 pulses per rotation
 - 250 ms interrupt service routine

LCD Subsystem

- LCD Displayed Values
 - RPM
 - Calculation to obtain RPM
 - Convert to string
 - Input string to LCD
 - Output frequency
 - Calculation to obtain VFD output frequency
 - Convert to string
 - Input string to LCD

