LINEAR INDUCTION MOTOR

Electrical and Computer Engineering
Tyler Berchtold, Mason Biernat and Tim Zastawny
Project Advisor: Professor Steven Gutschlag
3/3/2016

Project Overview

- Bradley University's Department of Electrical and Computer Engineering's Senior Project
- Design, construct, and test a linear induction motor (LIM)
- Run off of a three-phase voltage input
- Rotate a simulated linear track and cannot exceed 1,200 RPM
- Monitor speed, output power, and input frequency

[1]

Linear Induction Motor Background

- Alternating Current (AC) electric motor
- Powered by a multiple phase voltage scheme
- Force and motion are produced by a linearly moving magnetic field
- Used to turn large diameter wheels

[2]

Alternating Current Induction Machines

- Most common AC machine in industry
- Produces magnetic fields in an infinite loop of rotary motion
- Stator wrapped around rotor

Rotary To Linear

MAKE ACUT INDUCTION MOTOR

 11511511

3 PHASE POWER SUPPLY

3 PHASE LINEAR INDUCTION MOTOR

SMOOTH THE ROTOR INTO SEPARATE SHEETS
[4]

Previous Data

TABLE I: PREVIOUS DATA FROM MAGNETIC LEVITATION SENIOR PROJECT

Rotational Speed (RPM)	Output Power [W]
1106	510.78
1343	619.16

[5]

[6]
$\frac{\text { BRADLEY }}{\text { N }}$

Linear Track Run-off

TABLE II: Total Run-off of Simulated Linear Track

Side	(+) Run-off	(-) Run-off	Total Run-off
Right	$+0.015 "$	$-0.015 "$	$0.03 "$
Middle	$+0.016 "$	$-0.013 "$	$0.029 "$
Left	+0.018	$-0.012 "$	$0.03 "$

[1]

Initial Design

- 2-Pole machine
- Salient pole arrangement
- Laminated stator segments
- Operating at a max frequency of 120 [Hz]
- 16 AWG with current rating of 3.7 [A]
- Stator Tooth Length of 0.0762 [m]

[7]

Final Design

- 4-Pole machine
- Salient pole arrangement
- Laminated stator segments
- Operating at a max frequency of 120 [Hz]
- 16 AWG with current rating of 3.7 [A]
- Stator Tooth Length of 0.0889 [m] (3.5")

Final Stator Design

$\frac{\text { P }}{2}$

Completed Stator

- Ordered and pressed by Laser Laminations
- Arrived 2/22/16
- Working on mounting solution using angle irons

[10]

Simulated Linear Track Mounting Solution

- Current focus is on raising the mount for the simulated linear track
- Using previous mounting materials to raise the wheel with a new metal base
- Progress made on drilling and cutting mounting solution
- Working on acquiring fine threaded screws to allow for adjustments in wheel height
- Smaller air-gap than anticipated can be achieved

Bobbins

- Plastic material to go in-between the stator teeth and coils
- Necessary to prevent shorting between copper coils and the stator core
- Increases the ease of coil wrapping
- The coils will be wrapped in a salient pole arrangement

[7]

Bobbin Solutions

- CosmoCorp
- 15 Bobbins
- 8 weeks turnaround
- \$ 5,000
- Endicottcoil
- Did not go into specifics
- \$ 1,000 +
- Performance Bodies
- 10 ft . of Plastic Rolls

[12]
- 22 " wide
- 0.070" thick
- \$19.99
- Awaiting Two Other Quotes

Variable Frequency Drive

- 10 Min wait between turning on after turning it off
- This is to allow for capacitors to de-energize.
- VFD
- $0-10 \mathrm{~V}$ signal correlates to $0-120 \mathrm{~Hz}$
- A/D Converter
- D/A Converter
- A/D Converter
- Onboard the ATmegal28
- 250 ms interrupt service routine
- Compares input voltages

[13]

Coil Windings

- 16 AWG Wire
- GP/MR-200 Magnet Wire/ Winding Wire
- Heat is tolerated by coils
- Wire diameter calculated when determining turns per phase and stator tooth width
- 0.418 " of tolerance between adjacent wires, not including bobbins

18 AWG Heavy Build GP/MR-200® ${ }^{\circledR}$ Thermal Aging

[14]

Component Purchasing

- Laser Laminations: \$375
- \$225 for metal
- $\$ 100$ for pressing
- $\$ 50$ shipping
- Illinois Switchboard: \$176
- 2,000 ft. of dipped copper wire

Current Project Total: \$551

Completed Work

- Stator design
- Stator construction and ordering
- Frequency vs. Speed simulation
- Turns per phase and total wire calculations
- Dipped copper wire ordering
- Mounting solution design for simulated linear track
- Mounting solution design for stator
- Overall system design
- A/D convertor
- Tachometer and LCD interfacing

Work-in-Progress

- D/A convertor
- VFD programming
- Stator mounting completion
- Complete mounting of wheel and stator
- Bobbins
- Coil windings

Project Gantt Chart

TASK NAME	RESPONSIBLE	Date	Sep-15	Oct-15	Nov-15	Dec-15	Jan-16	Feb-16		Mar-16	Apr-16	May-16
TASK NAME	Responsible	Date	$\begin{array}{\|llllll\|}1 & 8 & 15 & 22 & 29\end{array}$	$\begin{array}{lllll}6 & 13 & 20 & 27\end{array}$	$\begin{array}{lllll}3 & 10 & 17 & 24\end{array}$	$\begin{array}{llllll}1 & 8 & 15 & 22 & 29\end{array}$	$\begin{array}{lllll}5 & 12 & 19 & 26\end{array}$	$2 \quad 916$	23	$\begin{array}{llllll}1 & 8 & 15 & 22 & 29\end{array}$	$\begin{array}{lllll}5 & 12 & 19 & 26\end{array}$	
General System Design	All	September 4, 2015										
Stator Design		November 17, 2015										
Research Winding Types	Tim	September 22, 2015										
Pole and Slot Pitch	Mason	September 22, 2015										
Pole Depth	All	November 17, 2015										
Slot/Teeth Ratio	All	October 27, 2015										
Number of Coil Windings	All	November 17, 2015										
Purchasing	All	November 30, 2015										
Construction		February 2, 2016										
Coil Windings	Mason and Tim	January 25, 2016						80\%				
Stator Mount	Mason and Tim	February 8, 2016						75\%				
Microcontroller Sytem	Tyler	February 8, 2016						80\%				
VFD Programming	Tyler	February 8, 2016						25\%				
Sensor Programming	Tyler	January 25, 2016						25\%				
Implementation	All	February 9, 2016								25\%		
Testing	All	March 7, 2016								0\%		

[15]

BRADLEY

Appendix

System Block Diagram

System Block Diagram

System Block Diagram

4-Pole to 2-Pole Comparison

4-Pole Machine Using 16 AWG:

- 45 Wraps fit on a 0.0762 m

Tooth

- 851 Turns per Phase
- 213 Wraps per Stator Tooth
- 5 Coil Wrapping Layers per Stator Tooth
- Outer Diameter of 0.0362 m
- Coil Inductance of $0.3701 \mu \mathrm{H}$

2-Pole Machine Using 16 AWG:

- 45 Wraps fit on a 0.0762 m

Tooth

- 1703 Turns per Phase
- 852 Wraps per Stator Tooth
- 19 Coil Wrapping Layers per Stator Tooth
- Outer Diameter of 0.0601 m
- Coil Inductance of $3.6249 \mu \mathrm{H}$

Turns Per Phase

$$
\begin{align*}
P_{\text {out }}= & 6.6 p n_{m s} B_{a g} A_{p} T_{p h} k_{w} I_{p h} \eta(P F) \tag{1.1}\\
P_{\text {out }} & =\text { Output Power } \\
p & =\text { Number of Poles } \\
n_{m s} & =\text { Mechanical Cycles per Second } \\
B_{a g} & =\text { Average Air }- \text { Gap Flux Density per Pole }=1.1[T] \\
A_{p} & =\text { Cross }- \text { Sectional Area of Pole Faces }=0.0346[\mathrm{~m}] \\
T_{p h} & =\text { Number of Turns per Phase } \\
k_{w} & =\text { Coil Winding Factor }=0.86 \\
I_{p h} & =\text { Input Phase Current }=3[A] \\
\eta & =\text { Efficiency }=0.6 \\
P F & =\text { Power Factor }=0.7
\end{align*}
$$

Rotational to Linear Speed

$$
\begin{align*}
& \omega=\frac{120 f}{p} \tag{1.3}\\
& \omega=\text { Rotational Speed of Rotor }[\mathrm{rpm}] \\
& p=\text { Number of Poles } \\
& f=\text { Input Frequency }[\mathrm{Hz}] \\
& \qquad v=r \omega\left(\frac{2 \pi}{60}\right) \tag{1.4}\\
& v=\text { Linear Velocity }\left[\frac{m}{s}\right] \\
& r= \\
& \text { Radius of Rotor }[\mathrm{m}] \tag{1.5}\\
& \\
& \quad U_{S}=2 \tau f \\
& U_{s}= \\
& \tau= \\
& \tau=\text { Pole Pinear Synchronous Speed }\left[\frac{m}{s}\right]
\end{align*}
$$

Initial Design

Ideal Linear Synchronous Speed vs. Frequency

Rotational to Linear Speed

Ideal Linear Synchronous Speed vs. Frequency

Pole Pitch

$$
\begin{equation*}
U_{s}=2 \tau f \tag{1.6}
\end{equation*}
$$

Pole Pitch $=0.1668 \mathrm{~m}$

Salient and Non-Salient

Tachometer Subsystem

- Main Components
- Photo-interruptor
- Transparent Disk with Notches
- External Interrupt
- Counts pulses
- 4 pulses per rotation
- 250 ms interrupt service routine

LCD Subsystem

- LCD Displayed Values
- RPM
- Calculation to obtain RPM
- Convert to string
- Input string to LCD
- Output frequency
- Calculation to obtain VFD output frequency
- Convert to string
- Input string to LCD

